Learning fault-tolerance in Radial Basis Function Networks
نویسندگان
چکیده
This paper describes a method of supervised learning based on forward selection branching. This method improves fault tolerance by means of combining information related to generalization performance and fault tolerance. The method presented focuses on the evolutive nature of the learning algorithm of Radial Basis Function Networks and employs optimization techniques to control the balance between the approximation error with and without faults. The technique developed is empirically analyzed and provides a simple and efficient means of learning fault tolerance. This is illustrated by examples taken from different classification and function approximation problems.
منابع مشابه
Tolerance of Radial Basis Functions Against Stuck-At-Faults
Neural networks are intended to be used in future nanoelectronic systems since neural architectures seem to be robust against malfunctioning elements and noise in their weights. In this paper we analyze the fault-tolerance of Radial Basis Function networks to StuckAt-Faults at the trained weights and at the output of neurons. Moreover, we determine upper bounds on the mean square error arising ...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملFault tolerant machine learning for nanoscale cognitive radio
We introduce a machine learning based classifier that identifies free radio channels for cognitive radio. The architecture is designed for nanoscale implementation, under nanoscale implementation constraints; we do not describe all physical details but believe future physical implementation to be feasible. The system uses analog computation and consists of cyclostationary feature extraction and...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملOn Node-Fault-Injection Training of an RBF Network
While injecting fault during training has long been demonstrated as an effective method to improve fault tolerance of a neural network, not much theoretical work has been done to explain these results. In this paper, two different node-fault-injection-based on-line learning algorithms, including (1) injecting multinode fault during training and (2) weight decay with injecting multinode fault, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001